Find the limit. Use l'Hospital's Rule where appropriate. If there is a more elementary method, consider using it.

$$\lim_{x\to\infty}\left(e^X+\frac{17}{x}\right)^{1/x}$$

Need Help?

Read It

## SCalcET8 6.4.024.

A tank is full of water. Find the work required to pump the water out of the spout. (Use 9.8 m/s<sup>2</sup> for g. Use 1000 kg/m<sup>3</sup> as the density of water. Assume r = 6 m and h = 2 m.)

J



If an object with mass m is dropped from rest, one model for its speed v after t seconds, taking air resistance into account, is

$$v = \frac{mg}{c}(1 - e^{-ct/m}),$$

where g is the acceleration due to gravity and c is a positive constant. (Note that the air resistance is proportional to the velocity of the object; c is the proportionality constant.)

(a) Calculate  $\lim_{t\to\infty} v$ .

What is the meaning of this limit in the context of this problem?

- It is the speed the object reaches before it starts to slow down.
- o It is the speed the object approaches as time goes on.
- It is the time it takes for the object to stop.
- It is the time it takes the object to reach its maximum speed.
- (b) For fixed t, use l'Hospital's Rule to calculate  $\lim_{c\to 0^+} v$ .

What can you conclude about the velocity of a falling object in a vacuum?

- The heavier the object is the faster it will fall in a vacuum.
- The velocity of a falling object in a vacuum is directly proportional to the amount of time it falls.
- The velocity of a falling object is proportional to its mass in a vacuum.
- An object falling in a vacuum will accelerate at a slower rate than an object not in a vacuum.

## **1.** SCalcET9 6.5.019.

The linear density  $\rho$  in a rod 3 m long is  $\frac{11}{\sqrt{x+1}}$  kg/m, where x is measured in meters from one end of the rod.

Find the average density  $\boldsymbol{\rho}_{\text{ave}}$  (in kg/m) of the rod.

$$\rho_{\text{ave}} = kg/m$$