Put a check mark to indicate your LECTURE SECTION and INSTRUCTOR:

\qquad 02 John Martin
\qquad 04 Lawrence Chang (main campus)
OLD EXAM
\qquad 06 Derek Postnikoff
___ 96 Lawrence Chang (Muenster campus)

Please print your names and IDs in $\underline{\text { ink }}$:

Family Name: \qquad First Name: \qquad

Student ID: \qquad

NSID: \qquad

INSTRUCTIONS

1. Time Limit: $\mathbf{8 0}$ minutes
2. Closed book. Closed notes. No calculators.
3. Write clearly and legibly.
4. Simplify answers unless otherwise instructed.
5. All answers to be marked are to be written inside this booklet only including rough work. Students are not allowed to use their own scrap paper.
6. Work lacking enough details may not be credited.
7. Check that you have $\mathbf{1 4}$ printed pages. Pages $3,6,11$ and much of page 14 may be used for doing rough work.
8. Numbers that are enclosed in square brackets, [], indicate the number of marks allotted for that question.
[2] 1. Evaluate the sum: $\sum_{i=0}^{99}\left[\frac{1}{3^{i}}-\frac{1}{3^{i+1}}\right]$
[5] 2. Use the definition of the definite integral as a limit of a Riemann sum to evaluate the area under the graph of $f(x)=x^{2}-1$ in the first quadrant between $x=1$ and $x=3$. You must take sample points to be the right endpoint of each subinterval. Here are some useful summation formulae:

$$
\sum_{i=1}^{n} i=\frac{n(n+1)}{2}, \quad \sum_{i=1}^{n} i^{2}=\frac{n(n+1)(2 n+1)}{6}, \quad \sum_{i=1}^{n} i^{3}=\frac{n^{2}(n+1)^{2}}{4}
$$

This page may be used for scratch work. If you use this page to answer a question, please clearly indicate on the original question page that you are doing so, and indicate here which question you are answering.
[4] 3. Use Part 1 of the Fundamental Theorem of Calculus to find $g^{\prime}(0)$ if $g(x)=\int_{e^{2 x}}^{2} \sqrt{t+\sqrt{t}} d t$.
[4] 4. The velocity function (in meters per second) for a particle moving along a straight line is given by $v(t)=t^{2}-4$. Find the distance travelled in the time interval $0 \leq t \leq 4$.

This page may be used for scratch work. If you use this page to answer a question, please clearly indicate on the original question page that you are doing so, and indicate here which question you are answering.
[4] 5. Evaluate the integral $\int_{0}^{5}\left[2+\sqrt{25-x^{2}}\right] d x$ by interpreting it in terms of areas.
6. Evalutate the integrals:
[5] (a) $\int_{0}^{4} \sqrt{4-x} \cdot x d x$
[4] (b) $\int \frac{\sin x}{1+2 \cos x} d x$
6. (... continued)
[5]
(c) $\int_{0}^{1} \frac{e^{x}}{1+e^{2 x}} d x$
[4] (d) $\int \ln (\sin x) \cot x d x$
[4] 7. Find the area of the region R bounded by the curves $y^{2}=3-x$ and $x=2 y$.

This page may be used for scratch work. If you use this page to answer a question, please clearly indicate on the original question page that you are doing so, and indicate here which question you are answering.
8. Consider the region R in the first quadrant of the plane bounded by the curves $y=\sqrt{4-x}, x=0$, and $y=0$.
[4] (a) Use the disk/washer method to find the volume of the solid obtained by rotating the region R about the line $y=-1$.
8. (... continued) Consider the same region R in the first quadrant of the plane bounded by the curves $y=\sqrt{4-x}, x=0$, and $y=0$ as given on page 12.
[5] (b) Use the method of cylindrical shells to find the volume of the solid obtained by rotating the region R about the line $x=4$.

Much of this page may be used for scratch work. If you use this page to answer a question, please clearly indicate on the original question page that you are doing so, and indicate here which question you are answering.

